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J. Phys. A:  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Harmonic generation due to nonlinear mixing of two 
strong microwaves in a magnetoplasmat 

SUXI,TA JAYARAM and V. K. TRIPATHI 
Department of Physics, Indian Institute of Technology, New Delhi-29, India 
MS. received 1 6 t h  September 1970 

Abstract. The effect of intensities of electromagnetic waves on their collisional 
mixing in an inert gas plasma has been investigated. For strong collisions the 
generated harmonic and combination frequencies in a helium plasma show a 
maximum (for an optimum value of wave intensity) while a continuous increase 
is found for weak collisions. In the presence of a static magnetic field the 
generation of odd harmonics is not possible with only one mode of the funda- 
mental wave, though even harmonics can be generated if a dc electric field is 
present, Resonances appear at fundamental and harmonic frequencies. 

1. Introduction 
The  collisional mixing of electromagnetic waves in plasmas has been investigated 

by several workers in recent years (Ginzburg and Gurevich 1960, Rosen 1961, 
Epstein 1962, Wetzel and Tang 1965, Sodha and Kaw 1969). The  nonlinear 
phenomena resulting from this mixing are of high practical utility for generation of 
higher frequency waves (i.e. harmonics and combination frequencies), modulation 
of waves and plasma diagnostics. The investigations of these workers have been 
restricted to moderately strong fields which are not high enough to affect the average 
carrier energy significantly. Consequently at such fields, though the harmonic 
current densities vary as the nth power of the fundamental field (n being the order 
of harmonic), the yields are not high. 

In  a recent paper (Jayaram and Tripathi 1970) the authors investigated the 
mixing of two microwaves in the presence of a high dc field. The  generated difference 
frequency wave showed a maximum at an optimum value of the dc field. However, 
the microwaves considered were weak. 

Varnum and Desloge (1969) recently reported their investigations on the genera- 
tion of third harmonics in ionized nitrogen using high-amplitude fundamental waves. 
They obtained an appreciably high yield of third harmonic current density. However, 
their analysis did not consider the exact form of the distribution of electron velocities. 
They approximated it to a Maxwellian one at an elevated temperature. 

In  this paper we have investigated the interaction of two strong microwaves in a 
helium plasma when a static magnetic field is applied to it. The  analysis is restricted 
to a slightly-ionized low-temperature plasma because at high temperatures (where 
the degree of ionization is high) nonlinear effects are less important 
(Ginzberg and Gurevich 1960). The  cross section for collisions of electrons with 
molecules is taken to be a constant; thus the analysis is valid only for inert gases. 
The  exact form of the isotropic part of the electron distribution function has been 
obtained by solving the Boltzmann equation in the limit of dominant elastic electton- 
molecule collisions. Owing to the presence of the static magnetic field the second- 
order anisotropic part of the distribution is a tensor having finite off-diagonal terms. 
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This general expression for the distribution has been used to evaluate various harmonic 
and combination frequency components of the current density. The  variation of these 
components with the applied electric and magnetic fields has been presented in the 
form of graphs for a helium plasma. 

2. Electron distribution function 
Let us consider a slightly-ionized homogeneous plasma at low temperature. We 

assume that a static magnetic field is applied along the x axis and two microwaves of 
frequency w1 and w2 are propagating in the same direction. Since the gas is slightly 
ionized we neglect all collisions except the electron-molecule collisions. Expanding 
the distribution function f in Cartesian tensors and retaining terms up to the second- 
order tensor f2, the equations governing thef, (zero order), fl  (first order) and f2 
(second order) components off are respectively (Shkarofsky et al. 1966) 

and 

---- 8 f O  e 2  ( v 2 E , f 1 )  = - - { u 2 v  m a  (Cfo+ !"l'")i 
at 3mc2 27; av in 27; 

2fl eE 8fo e H x f ,  2e a 
%t nz %U me 5nm3 8c 

____-- (v3E. f2)  = -.fi 

where E and H are the electric and magnetic fields in the system and v is 
the electron-molecule collision frequency, the other symbols having their usual 
meaning. The  space gradient terms have been neglected. The  collision frequency 
v for an inert gas plasma is 

where U = (m/2KT)1% and v o  is a constant. The  electric field E ,  which includes the 
selfconsistent fields, can be written as 

v = VOU (4) 

E = El exp(iw,t) + E 2  exp(iw2t) + Ell  exp(2iwlt) + E z 2  exp(2iw2t) 
+ El2  exp(i(wl + w 2 ) t } +  E l  - 2  exp{i(wl - w2)t} 

+ E l l 2  exp(i(2wl + w2)t}+E11-2 exp(i(2wl - w2)t} + ... . ( 5 )  
E ,  and E,  are the two externally applied fields, the other terms being selfconsistent 
fields. Similar expressions for the various components of f  can be obtained from 
equation ( 5 )  by replacing the E by f and adding a time-independent term to the 
equation for fo. 

Since in the evaluation of current density we need the fl part of the distribution 
function explicity, we solve equation (2) for fundamental components offl to obtain 

and 

where 

e %foe f l u "  = G x  (A,"Ba- -A2"Bu') 

Bu+ = {v+ i(wa f we)}-' ci. = 1 , 2  
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we is the electron cyclotron frequency, and 

Ala  = E," + iE," and Aza = E,"- iE," ( 7 )  
are the fields of the extraordinary (left-handed circularly polarized) and ordinary (right- 
handed circularly polarized) modes respectively. I t  is easily seen from equations (1-3) 
that the second harmonic and first-order sum and difference frequency components 

is governed by equation (1) which can be solved to give 
offl vanish. 

The nature of foo 

. fO0 = 

.(U) = 

where 

and 

1'~'~ exp (- /I -j 2u du 
1 +.(U) 

e 2 & f  
12m2kT 

2 ( AlaAl "*B, - B,  - * + AZaAZa'Ba + B,  + *) ( 8 b )  

is the normalization constant. 
In  the limit of w e  + O ,  and w1 2 2 < v 2 ,  equation (8a)  reduces to 

foo = iVo(u2 + x)" exp( - u2)  (9) 
in the presence of a high dc field. Equation (9) is identical with equation (7a)  of 
Jayaram and Tripathi (1970). 

In  the limit of weak nonlinearity ( E  < 1) or weak collisions (v < lwl - w e  1 ,  ,w2 - we I), 
equation (8a) reduces to the Maxwellian form, while in the opposite limiting case of 
strong collisions (v+ [wl + weI, Iwz+ wel)  and a+ 1, it assumes the Druyvesteyn form. 

In  the case of the 2w1 + w2 frequency components offl (which will give rise to an 
electric field Ell2 exp{i(2wl + U&)), equation (2) can be solved using equation (3) and 
equation (1) in the limit 2w1 > mvjiW and ( w1 + w2) > mv/-W to give 

where 
Paar = {v+ i(w,+ w,+ ~ ~ - - w ~ ) ) - ~  

C,, = ( ~ + i ( ~ , + ~ 4 - 2 w ~ ) } - ~  H,, = v+ i(w,+ wo) 
A4 
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and 
f / . ,p ,y  = 1,2.  

The  expression for f1:l2 - is obtained from equation (10) by replacing 
U ,  by -0, and A1,2192 by A2,11*2. Other combination frequency components offl 
can be evaluated in a similar way. We can see from equation (IO) that the contribution 
of the f2  terms in the combination frequency components of fl is of the same order 
as that of the fo terms. 

3. Current density 
The current density is defined as 

where N is the electron concentration. For the fundamental and 2wi  + w p  frequency 
components of current density, equation (1 1) gives the following expressions: 

and 

where up2 = 4xNe2/m is the electron plasma frequency, 

are two operators, 
H ,  = v-iw, D,, = 2v+i(w,+w,) 

and 
m 

F12 = 2v + i( w1 + w2 - 2w,)  ($) = 471.1 t ~ p $ f o o  dv 
0 

denotes the average of a quantity 4. 
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The  expression for - is obtained from equation (13) by replacing 
U J ~  by - w e  and A1,,ls2 by A2,11,2. Again by replacing w2 by - w 2  and by 
A2,12* we obtain an expression for the difference frequency component 2w, - w2 of 
the current density. Similarly by replacing w2 by w1 and A, ,22 by +Al ,21 in equation (13) 
we obtain the following expression for the third harmonic current density : 

The  first and fifth averages of equation (13) and the first term of the first average in 
equation (14) are both due to fo and all the other terms are due to f2. At high wave 
frequencies the contributions due to fo and f2 are of the same order, and in the 
limit w $ v  these are in the same phase. At low frequencies the contribution due to 
fo dominates and becomes out of phase by 77j2 with the contribution due to f2. The  
resonance effects appearing at w , , ~  = we,  2w, + w2 = w e  and 3w1 = w e  are clearly 
visible from equations ( 12-14) though these are suppressed by collisions. 

It is to be noted from equations (13 and 14) that, from like modes of two waves, 
harmonics and sum frequencies cannot be generated, only difference frequency waves 
are generated. This can be easily understood in terms of the power absorption from 
the fundamental wave. The  power absorption of a circularly polarized wave is time- 
independent ; hence the collision frequency is not modulated. The  power absorption 
due to the mutual interaction of two waves is given by 

Power absorption = Re(E1) x Re(J2) + Re(E2) x Re(J1) 
= 4Re(E1J2 + El l2*  + E2J1 + E2*J1). (15)  

For waves having the same circular polarization, that is E:*2 = iE,1s2 and 
J;s2 = i Jy1s2, the first and third terms of equation (15) vanish. Therefore only 
difference frequencies are generataed. This result is contradictory to that of 
Sodha and Kaw (1965) who, neglecting the off-diagonal terms of the fz tensor, showed 
that, even with one mode of a fundamental wave, third harmonics can be generated. 
-4s we have neglected the motion of ions the generated frequency must be greater 
than the ion cyclotron frequency. 

Ifre can mention the following special cases. 
(i) If w2 = 0 (i.e. the second electric field is a dc field) and if we replace 

(ii) If v <  ' w ~ , ~ -  w e ]  and CI is arbitrary, equation (14) assumes the form 

by 
2A1,20, equation (13) reduces to an expression for the second harmonic current density. 

where 

I 1  = - 

X 

1 6 ~ - , / ~ (  1 + x)-li2v0 1 3 d i 2  [-+ - ivo( 1 + cc)ll2 
(30.11 We)2(W12 - W e z )  5 8 

2( + w,2) 2 
w12 - we2)wl + 3(w1 T w e )  + 3 1  3 o w l  
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011 I I 1 I 

IO-' lo-3 I o-2 lo- '  0.5 
A,: C e s u )  

Figure 1. Extraordinary fundamental current density against All for Azl = 
A12 = A22 = 0-05 esu, w1 = w, = l o l o  rad s-'. Curves A, C and E correspond 
t o v o  = 1 0 9 s - l a n d w ~  = 5 xlOg, 1.9 xlOl'and0.99 ~ I O ~ ~ r a d s - ~ r e s p e c ~ i v e l y  

and curves B, D and F are for v o  = IO8 s - l  and the same w 2 .  

0 
 IO-^ 10- I V 2  Io-' 0 5  

A,' ( e s u )  

Figure 2 .  Off-resonance extraordinary current densities against for w1 = 
1Olo rad s - I ,  w a  = 5 x109 rad s-l, A12 = Azl = As2 = 0.05 esu. Curves A 
and B are for fundamental current densities with w e  = lo1' rad s- '  and v o  = lo9  
and lo8  s - l  respectively, curves C and D are for the 2 w l  + w a  frequency current 

densities with same w e  and v o  and different ordinate. 
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and 

for ( 3 w ,  - ue) > Y, that is, at off-resonance. 
At resonance (3w, = we)  the values of I ,  and I ,  for extraordinary mode are 

)} (19) (30 5 w12 - w,2 

I2 = (i + n-112 (20) 

1 2012+we2 -+--- 8r-1/2(l + N ) - ~ ! '  1 ivo(l+Cr)1!2x1/2 
vo(w12- we2) I- 5 + 4% 

ivo( 1 + cx)1'2j. 
Il = 

and 
4 ~ - ~ / ' ( 1  + x ) - ~ ! '  1 3 

( ~ 1  T we)'YO ( ~ 1  T we) 

Equations (16-18) show that the third harmonic current density at off-resonance 
varies as (1 + cx)-l/ '  Al,21 Al,2A2,,1 with the amplitude of the fundamental wave. 
This shows that the variation at high fields will be as the second power of the 
amplitude of the fundamental wave, while at weak fields it will vary as the cube of the 

which becomes independent of the fundamental wave amplitude of very high fields. 
amplitude. At resonance the variation is of the form (1 + x ) - ~ ! '  A1,21A1,21A2,1 1 , 

4. Discussion and conclusions 
I n  order to study the effect of wave amplitude and static magnetic field on high 

frequency generation, the averages of equations (12) and (13) have been evaluated 
numerically on an ICT1909 computer for a helium plasma. The  general case of 
combination frequency generation has been considered for two values of v o  (i.e. 
vo = lo8 and 109s-l where uo = qiVm(2kT/m)1/2, q being the constant collision 
cross section and N ,  the molecular density) and the results are shown in the form 
of graphs. 

'1 
I 

5t 

I -  
D 

0- - 
10 

b I 

- 4  I 0-3 I o-2 Io-' 0.5 
A: ( e s u )  

Figure 3. Ratio of extraordinary second harmonic current density to the funda- 
mental current density against AI1 for AI2 = AZ1 = AZ2 = 0.05 esu, w1 = 
1010 rad s-1. Curves A and B are for Y O  = l o9  and lo8  s - l  respectively at 
cue = 1 O 1 O  rad and curves C and D are for the same parameters at w e  = 
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In  figure (1) we see that the fundamental current densities (equation 12) increase 
with the amplitudes of the fundamental waves as Iong as the effect of ware amplitude 
on electron temperature is small. At high field strengths of fundamental waves, when 
resonance conditions are not satisfied and collisions are weak (figure 2), the current 
density goes on increasing with the field; otherwise the current density gets saturated. 
This saturation is due to the inverse dependence of the conductivity at cyclotron 
resonance on the electron collision frequency. Owing to the increase in collision 
frequency with field strength, the conductivity decreases with increasing field strength. 

x ~ 0 - 5  3, 

Figure 4. A-ormalized 2wl  + w 2  frequency extraordinary current density against 
All for A12 = Azl = A Z 2  = 0.05 esu, w 1  = w e  = 1O1O rad s-l. Curves A, B 
and E are for w 2  = 0.5 xlO1@, 1.9 ~ 1 0 ' ~  and 0.99 ~ 1 0 ' ~  rads- l  respectively 
at v o  = l oQ and curves B, D and F are for the same parameters at 

v 0  = 10' rad s - l .  

E 

I -  

i o - 4  i 0-s 10-2 lo-' 0.5 
A,' ( e s u :  

Figure 5. Normalized 2 w l f  w 2  frequency extraordinary current density against 
AI1 for AI2 = AZ1 = A Z 2  = 0.1 esu, w 1  = w e  = l O 1 O  rad s - l .  Curves A, C 
and E are for w2 = 0.5 x l0 l0 ,  1.9 x l 0 l o  and 0.99 xlOl@ rad s- l  respectively 
and y o  = lo9 s-';curvesB, DandFareforthesameparametersat v e  = 10's-l.  
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The ratios of nonlinear extraordinary second harmonic and second-order 
combination frequency current densities to the fundamental current density 
(figures 3-5) show a maximum followed by a minimum for the high collision frequency 
case (curves A and C of figure 3 and curves A, C and E of figures 4 and 5 ) ,  while these 
show a rather continuous rise for the low collision frequency one (curves B and D of 
figure 3 and curves B, D and F of figures 4 and 5 ) .  For strong collisions the fall 
beyond the maximum is due to the decrease in harmonic current density with collision 
frequency, on condition that the latter exceeds the electron cyclotron and wave 
frequencies. Since at high fields the rise in collision frequency with field strength is 
rapid, this condition is satisfied, hence collisions dominate the harmonic current 
variation with field strength resulting in this fall in the current density. At high 
fields the isotropic part of the distribution function assumes the Druyesteyn form and 
collisions vary sIowly with field strength thereby increasing the ratio again. For 
weak collisions the harmonic current increases with collision frequency ; hence it also 
increases more rapidly with the electric field. 

w e  ( rad s-11 

Figure 6. Normalized extraordinary 2 w l  + w2 frequency current density against 
w e  for All = esu, AIZ = Azl = A2' = 0.01 esu, w 1  = 1O'O rad s - l .  
Curves A, C and D are for v o  = l o g s - '  and w 2  = 0.5 xlO1@, 1.9 x10'O and 
0.99 x lo1@ rad respectively; curves B, D and F are for y o  = lo8  s - l  and 

the same w 2 .  

The variation of the nonlinear harmonic current density ratio (figures 6 and 7) 
with static magnetic field shows maxima and minima in the resonance region. For 
very weak magnetic fields this ratio is unaffected while for high magnetic fields it 
decreases sharply. This is true for both weak and strong collisions as in these regions 
the resonance effects are suppressed by collisions. 
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In  conclusion we can say that the collisional mixing of strong electromagnetic 
waves in a weakly ionized homogeneous plasma leads to the generation of harmonics ; 
only odd harmonics are generated in the absence of a dc field and in the presence of 
a dc field even harmonics are also possible. Generation of odd harmonics is not 

Figure 7. h-ormalized extraordinary 2wl + w2 frequency current density against 
w e  for AIZ  = 10-3esu ,  Az' = A 1  - - A2' = 0.01 esu, w 1  = 10lOrads- ' .  
Curves A, C and D are for v o  = l og  s - l  and w2 = 0.5 x lolo,  1 .9  x l o lo  and 
0.99 x l 0 l 0  r ads - l  respectively, curves B, D and F are for v o  =108s - l  

and the same w 2 .  

possible with only one mode of the fundamental wave though even harmonics can 
be generated if a dc field is present. The desired mode of even harmonics can be 
obtained from the mode of same polarization of the fundamental wave. The  effect 
of high wave intensities on harmonic generation comes out to be high and is governed 
by the effectiveness of the collisions. 

The  analysis is applicable to velocity-dependent scattering cross sections also and 
numerical computations can be performed. This velocity dependence of the scattering 
cross section is revealed in the dependence of harmonic power on incident power. 
Conversely the variation of harmonic power with incident power can be used as a 
diagnostic tool. 

The  generation of harmonics in a dense plasma, where the ordinary mode of 
fundamental waves does not propagate, is possible due to the interaction of helicons, 
if a dc field is present. 

We have not evaluated the selfconsistent electric field for which the wave equation 
has to be solved. Papa and Haskell(l966) have solved the wave equation for funda- 
mental waves. Using their solution for the fundamental waves and applying proper 
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boundary conditions one can find the electric intensity in a slab geometry. This will 
be reported shortly. 
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